Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 969
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593080

RESUMO

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Assuntos
Marchantia , Masculino , Animais , Marchantia/genética , AMP Cíclico/metabolismo , Motilidade dos Espermatozoides/genética , Sementes/metabolismo , Adenilil Ciclases/metabolismo , Espermatozoides/metabolismo
2.
Gut Liver ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638101

RESUMO

Background/Aims: : The occurrence and development of circular RNAs in gastric cancer (GC) has attracted increasing attention. This study focused on investigating the biological role and molecular mechanism of circ_0043947 in GC. Methods: : The expression levels of circ_0043947, miR-384 and CAMP response element binding protein (CREB1) were determined by quantitative real-time polymerase chain reaction or Western blotting. Cell proliferation, migration, and invasion, the cell cycle and apoptosis were determined using a cell counting kit-8 assay, 5-ethynyl-2'-deoxyuridine assay, colony formation assay, wound healing assay, transwell assay, and flow cytometry assay. The interaction between miR-384 and circ_0043947 or CREB1 was verified by dual-luciferase reporter assay and RNA pull-down assay. The in vivo assay was conducted using a xenograft mouse model. Results: : Circ_0043947 and CREB1 expression levels were significantly upregulated, whereas miR-384 expression levels were downregulated in GC tissues and cells. Functionally, knockdown of circ_0043947 inhibited cell proliferation, migration and invasion and induced G0/G1 phase arrest and apoptosis in vitro. Circ_0043947 could upregulate CREB1 expression by directly sponging miR-384. Rescue experiments showed that a miR-384 inhibitor significantly reversed the inhibitory effect of si-circ_0043947 on GC progression, and CREB1 overexpression significantly reversed the inhibitory effect of miR-384 mimics on the progression of GC cells. Furthermore, silencing of circ_0043947 inhibited tumor growth in vivo. Conclusions: : Circ_0043947 acted as an oncogenic factor in GC to mediate GC cell proliferation, migration, and invasion, the cell cycle and apoptosis by regulating the miR-384/CREB1 axis. Circ_0043947 may be a potential target for GC diagnosis and therapy.

3.
Mol Genet Genomics ; 299(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598031

RESUMO

Phosphatidylserine (PS) is important for maintaining growth, cytoskeleton, and various functions in yeast; however, its role in stress responses is poorly understood. In Schizosaccharomyces pombe, the PS synthase deletion (pps1∆) mutant shows defects in growth, morphology, cytokinesis, actin cytoskeleton, and cell wall integrity, and these phenotypes are rescued by ethanolamine supplementation. Here, we evaluated the role of Pps1 in the salt stress response in S. pombe. We found that pps1∆ cells are sensitive to salt stresses such as KCl and CaCl2 even in the presence of ethanolamine. Loss of the functional cAMP-dependent protein kinase (git3∆ or pka1∆) or phospholipase B Plb1 (plb1∆) enhanced the salt stress-sensitive phenotype in pps1∆ cells. Green fluorescent protein (GFP)-Pps1 was localized at the plasma membrane and endoplasmic reticulum regardless of the stress conditions. In pka1∆ cells, GFP-Pps1 was accumulated around the nucleus under the KCl stress. Pka1 was localized in the nucleus and the cytoplasm under normal conditions and transferred from the nucleus to the cytoplasm under salt-stress conditions. Pka1 translocated from the nucleus to the cytoplasm during CaCl2 stress in the wild-type cells, while it remained localized in the nucleus in pps1∆ cells. Expression and phosphorylation of Pka1-GFP were not changed in pps1∆ cells. Our results demonstrate that Pps1 plays an important role in the salt stress response in S. pombe.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Cloreto de Cálcio , Estresse Salino/genética , Etanolamina , Etanolaminas , Proteínas de Fluorescência Verde
5.
J Biol Chem ; : 107287, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636658

RESUMO

Mycobacterial genomes encode multiple adenylyl cyclases and cAMP effector proteins, underscoring the diverse ways these bacteria utilize cAMP. We identified universal stress proteins (USP), Rv1636, and MSMEG_3811 in M. tuberculosis and M. smegmatis, respectively, as abundantly expressed, novel cAMP-binding proteins. Rv1636 is secreted via the SecA2 secretion system in M. tuberculosis but is not directly responsible for the efflux of cAMP from the cell. In slow-growing mycobacteria, intrabacterial concentrations of Rv1636 were equivalent to the concentrations of cAMP present in the cell. In contrast, levels of intrabacterial MSMEG_3811 in M. smegmatis were lower than that of cAMP and therefore, overexpression of Rv1636 increased levels of 'bound' cAMP. While msmeg_3811 could be readily deleted from the genome of M. smegmatis, we find that the rv1636 gene is essential for the viability of M. tuberculosis and is dependent on the cAMP-binding ability of Rv1636. Therefore, Rv1636 may function to regulate cAMP signaling by direct sequestration of the second messenger. This is the first evidence of a 'sponge' for any second messenger in bacterial signaling that would allow mycobacterial cells to regulate the available intrabacterial 'free' pool of cAMP.

6.
Cell Mol Life Sci ; 81(1): 132, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472446

RESUMO

P2Y11 is a G protein-coupled ATP receptor that activates IL-1 receptor (IL-1R) in a cyclic AMP dependent manner. In human macrophages, P2Y11/IL-1R crosstalk with CCL20 as a prime target is controlled by phosphodiesterase 4 (PDE4), which mediates breakdown of cyclic AMP. Here, we used gene expression analysis to identify activation of CXCR4 and CXCR7 as a hallmark of P2Y11 signaling. We found that PDE4 inhibition with rolipram boosts P2Y11/IL-1R-induced upregulation of CXCR7 expression and CCL20 production in an epidermal growth factor receptor dependent manner. Using an astrocytoma cell line, naturally expressing CXCR7 but lacking CXCR4, P2Y11/IL-1R activation effectively induced and CXCR7 agonist TC14012 enhanced CCL20 production even in the absence of PDE4 inhibition. Moreover, CXCR7 depletion by RNA interference suppressed CCL20 production. In macrophages, the simultaneous activation of P2Y11 and CXCR7 by their respective agonists was sufficient to induce CCL20 production with no need of PDE4 inhibition, as CXCR7 activation increased its own and eliminated CXCR4 expression. Finally, analysis of multiple CCL chemokines in the macrophage secretome revealed that CXCR4 inactivation and CXCR7 activation selectively enhanced P2Y11/IL-1R-mediated secretion of CCL20. Altogether, our data establish CXCR7 as an integral component of the P2Y11/IL-1R-initiated signaling cascade and CXCR4-associated PDE4 as a regulatory checkpoint.


Assuntos
Receptores CXCR4 , Transdução de Sinais , Humanos , Linhagem Celular , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacologia , AMP Cíclico/metabolismo , Macrófagos/metabolismo , Receptores CXCR4/genética , Receptores Purinérgicos/metabolismo
7.
J Pharmacol Sci ; 154(4): 294-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485347

RESUMO

Cardio-stimulatory actions of aciclovir have been considered to primarily depend on the sympathetically-mediated reflex resulting from its hypotensive effect. To further clarify onset mechanisms of the cardio-stimulatory actions, we initially studied them using isoflurane-anesthetized dogs under thorough ß1-adrenoceptor blockade with atenolol (1 mg/kg, i.v.) (n = 4). Aciclovir (20 mg/kg/10 min, i.v.) decreased mean arterial blood pressure by 10 mmHg, whereas it increased heart rate by 10 bpm and maximum upstroke velocity of ventricular pressure by 928 mmHg/s, and shortened AH interval by 2 ms, indicating that cardio-stimulatory actions were not totally abolished by ß1-adrenoceptor blockade. Then, unknown mechanisms of cardio-stimulatory action were explored. Since aciclovir has a similar chemical structure to theophylline, in silico molecular docking simulation was performed, indicating aciclovir as well as theophylline possesses strong likelihood of interactions with phosphodiesterase 1A, 1C and 3A. Indeed, aciclovir inhibited phosphodiesterase 1A derived from the bovine heart (n = 4), moreover it exerted positive chronotropic action on the atrial tissue preparation of rats along with an increase of tissue cyclic AMP concentration (n = 4). These results indicate that cardio-stimulatory actions of aciclovir could result from not only hypotension-induced, reflex-mediated increase of sympathetic tone but also its inhibitory effects on phosphodiesterase in the heart.


Assuntos
Hipotensão , Teofilina , Animais , Bovinos , Ratos , Cães , Teofilina/farmacologia , Aciclovir/farmacologia , Simulação de Acoplamento Molecular , Pressão Sanguínea , Átrios do Coração , Frequência Cardíaca , Diester Fosfórico Hidrolases , Receptores Adrenérgicos
8.
Acta Neuropathol Commun ; 12(1): 24, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331815

RESUMO

Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas de Ligação ao GTP , Mamíferos/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Schwann
9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338641

RESUMO

The natural cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), is biosynthesized from prostaglandin E (PGE) and activated inositol phosphate (n-Ins-P), which is synthesized by a particulate rat-liver-enzyme from GTP and a precursor named inositol phosphate (pr-Ins-P), whose 5-ring phosphodiester structure is essential for n-Ins-P synthesis. Aortic myocytes, preincubated with [3H] myo-inositol, synthesize after angiotensin II stimulation (30 s) [3H] pr-Ins-P (65% yield), which is converted to [3H] n-Ins-P and [3H] cyclic PIP. Acid-treated (1 min) [3H] pr-Ins-P co-elutes with inositol (1,4)-bisphosphate in high performance ion chromatography, indicating that pr-Ins-P is inositol (1:2-cyclic,4)-bisphosphate. Incubation of [3H]-GTP with unlabeled pr-Ins-P gave [3H]-guanosine-labeled n-Ins-P. Cyclic PIP synthase binds the inositol (1:2-cyclic)-phosphate part of n-Ins-P to PGE and releases the [3H]-labeled guanosine as [3H]-GDP. Thus, n-Ins-P is most likely guanosine diphospho-4-inositol (1:2-cyclic)-phosphate. Inositol feeding helps patients with metabolic conditions related to insulin resistance, but explanations for this finding are missing. Cyclic PIP appears to be the key for explaining the curative effect of inositol supplementation: (1) inositol is a molecular constituent of cyclic PIP; (2) cyclic PIP triggers many of insulin's actions intracellularly; and (3) the synthesis of cyclic PIP is decreased in diabetes as shown in rodents.


Assuntos
Fosfatos de Inositol , Inositol , Prostaglandinas E , Humanos , Ratos , Animais , Inositol/farmacologia , Inositol/metabolismo , Fosfatos de Inositol/metabolismo , Guanosina Trifosfato , Guanosina , Fosfatos
10.
Plant Signal Behav ; 19(1): 2310963, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38314783

RESUMO

In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (Brassica napus L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of TAA1 and CYP83B1 in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of PR4 and KIN2 expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.


Assuntos
Brassica napus , Ciclopentanos , Oxilipinas , Reguladores de Crescimento de Plantas , Animais , Reguladores de Crescimento de Plantas/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo
11.
Aging Cell ; : e14130, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415902

RESUMO

Aging-associated renal dysfunction promotes the pathogenesis of chronic kidney disease. Mitochondrial dysfunction in renal tubular epithelial cells is a hallmark of senescence and leads to accelerated progression of renal disorders. Dysregulated calcium profiles in mitochondria contribute to aging-associated disorders, but the detailed mechanism of this process is not clear. In this study, modulation of the sirtuin 1/angiotensin II type 1 receptor (Sirt1/AT1R) pathway partially attenuated renal glomerular sclerosis, tubular atrophy, and interstitial fibrosis in D-galactose (D-gal)-induced accelerated aging mice. Moreover, modulation of the Sirt1/AT1R pathway improved mitochondrial dysfunction induced by D-gal treatment. Transient receptor potential channel, subtype C, member 3 (TRPC3) upregulation mediated dysregulated cellular and mitochondrial calcium homeostasis during aging. Furthermore, knockdown or knockout (KO) of Trpc3 in mice ameliorated D-gal-induced mitochondrial reactive oxygen species production, membrane potential deterioration, and energy metabolism disorder. Mechanistically, activation of the AT1R/PKA pathway promoted CREB phosphorylation and nucleation of CRE2 binding to the Trpc3 promoter (-1659 to -1648 bp) to enhance transcription. Trpc3 KO significantly improved the renal disorder and cell senescence in D-gal-induced mice. Taken together, these results indicate that TRPC3 upregulation mediates age-related renal disorder and is associated with mitochondrial calcium overload and dysfunction. TRPC3 is a promising therapeutic target for aging-associated renal disorders.

12.
mSphere ; 9(2): e0063523, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38315033

RESUMO

Noelia Lander works on cell signaling in American trypanosomes and studies the role of cyclic adenosine monophosphate (cAMP) microdomains in environmental sensing and differentiation. In this mSphere of Influence, Dr. Lander reflects on three research articles in different eukaryotic models that had impacted on the way she thinks about the regulation of cAMP signals in Trypanosoma cruzi, the etiologic agent of Chagas disease. The articles "FRET biosensor uncovers cAMP nano-domains at ß-adrenergic targets that dictate precise tuning of cardiac contractility" (N. C. Surdo, M. Berrera, A. Koschinski, M. Brescia, et al., Nat Commun 8:15031, 2017, https://doi.org/10.1038/ncomms15031), "Cyclic AMP signaling and glucose metabolism mediate pH taxis by African trypanosomes" (S. Shaw, S. Knüsel, D. Abbühl, A. Naguleswaran, et al., Nat Commun 13:603, 2022, https://doi.org/10.1038/s41467-022-28293-w), and "Encystation stimuli sensing is mediated by adenylate cyclase AC2-dependent cAMP signaling in Giardia" (H. W. Shih, G. C. M. Alas, and A. R. Paredez, Nat Commun 14:7245, 2023, https://doi.org/10.1038/s41467-023-43028-1) influenced her current hypothesis that cAMP signals are generated in response to environmental cues leading to changes in membrane fluidity at the flagellar tip and the contractile vacuole complex of T. cruzi, structures where cAMP mediates key cellular processes for developmental progression.


Assuntos
Trypanosoma cruzi , Feminino , Estados Unidos , Humanos , Trypanosoma cruzi/metabolismo , AMP Cíclico/metabolismo
13.
Appl Environ Microbiol ; 90(2): e0216923, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289128

RESUMO

As advances are made toward the industrial feasibility of mass-producing biofuels and commodity chemicals with sugar-fermenting microbes, high feedstock costs continue to inhibit commercial application. Hydrolyzed lignocellulosic biomass represents an ideal feedstock for these purposes as it is cheap and prevalent. However, many microbes, including Escherichia coli, struggle to efficiently utilize this mixture of hexose and pentose sugars due to the regulation of the carbon catabolite repression (CCR) system. CCR causes a sequential utilization of sugars, rather than simultaneous utilization, resulting in reduced carbon yield and complex process implications in fed-batch fermentation. A mutant of the gene encoding the cyclic AMP receptor protein, crp*, has been shown to disable CCR and improve the co-utilization of mixed sugar substrates. Here, we present the strain construction and characterization of a site-specific crp* chromosomal mutant in E. coli BL21 star (DE3). The crp* mutant strain demonstrates simultaneous consumption of glucose and xylose, suggesting a deregulated CCR system. The proteomics further showed that glucose was routed to the C5 carbon utilization pathways to support both de novo nucleotide synthesis and energy production in the crp* mutant strain. Metabolite analyses further show that overflow metabolism contributes to the slower growth in the crp* mutant. This highly characterized strain can be particularly beneficial for chemical production by simultaneously utilizing both C5 and C6 substrates from lignocellulosic biomass.IMPORTANCEAs the need for renewable biofuel and biochemical production processes continues to grow, there is an associated need for microbial technology capable of utilizing cheap, widely available, and renewable carbon substrates. This work details the construction and characterization of the first B-lineage Escherichia coli strain with mutated cyclic AMP receptor protein, Crp*, which deregulates the carbon catabolite repression (CCR) system and enables the co-utilization of multiple sugar sources in the growth medium. In this study, we focus our analysis on glucose and xylose utilization as these two sugars are the primary components in lignocellulosic biomass hydrolysate, a promising renewable carbon feedstock for industrial bioprocesses. This strain is valuable to the field as it enables the use of mixed sugar sources in traditional fed-batch based approaches, whereas the wild-type carbon catabolite repression system leads to biphasic growth and possible buildup of non-preferential sugars, reducing process efficiency at scale.


Assuntos
Repressão Catabólica , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Xilose/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Açúcares/metabolismo , Fermentação , Carbono/metabolismo
14.
Circ Res ; 134(4): 393-410, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275112

RESUMO

BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Complexo de Endopeptidases do Proteassoma , Camundongos , Ratos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Transgênicos , Peptídeos/metabolismo , Mamíferos
15.
Annu Rev Pharmacol Toxicol ; 64: 387-415, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37683278

RESUMO

G protein-coupled receptors are the largest and pharmacologically most important receptor family and are involved in the regulation of most cell functions. Most of them reside exclusively at the cell surface, from where they signal via heterotrimeric G proteins to control the production of second messengers such as cAMP and IP3 as well as the activity of several ion channels. However, they may also internalize upon agonist stimulation or constitutively reside in various intracellular locations. Recent evidence indicates that their function differs depending on their precise cellular localization. This is because the signals they produce, notably cAMP and Ca2+, are mostly bound to cell proteins that significantly reduce their mobility, allowing the generation of steep concentration gradients. As a result, signals generated by the receptors remain confined to nanometer-sized domains. We propose that such nanometer-sized domains represent the basic signaling units in a cell and a new type of target for drug development.


Assuntos
Desenvolvimento de Medicamentos , Transdução de Sinais , Humanos , Membrana Celular
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166936, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37951509

RESUMO

Soluble adenylyl cyclase (sAC) is the evolutionarily most ancient of a set of 10 adenylyl cyclases (Adcys). While Adcy1 to Adcy9 are cAMP-producing enzymes that are activated by G-protein coupled receptors (GPCRs), Adcy10 (sAC) is an intracellular adenylyl cyclase. sAC plays a pivotal role in numerous cellular processes, ranging from basic physiological functions to complex signaling cascades. As a distinct member of the adenylyl cyclase family, sAC is not activated by GPCRs and stands apart due to its unique characteristics, regulation, and localization within cells. This minireview aims to honour Ulli Brandt, the outgoing Executive Editor of our journal, Biochimica Biophysica Acta (BBA), and longstanding Executive Editor of the BBA section Bioenergetics. We will therefore focus this review on bioenergetic aspects of sAC and, in addition, review some important recent general developments in the field of research on sAC.


Assuntos
Adenilil Ciclases , Transdução de Sinais , Adenilil Ciclases/metabolismo , Metabolismo Energético
17.
J Biol Chem ; 300(1): 105509, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042493

RESUMO

Today, the majority of patients with pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL, hereafter ALL) survive their disease, but many of the survivors suffer from life-limiting late effects of the treatment. ALL develops in the bone marrow, where the cells are exposed to cAMP-generating prostaglandin E2. We have previously identified the cAMP signaling pathway as a putative target for improved efficacy of ALL treatment, based on the ability of cAMP signaling to reduce apoptosis induced by DNA damaging agents. In the present study, we have identified the antioxidant N-acetyl cysteine (NAC) as a powerful modifier of critical events downstream of the cell-permeable cAMP analog 8-(4-chlorophenylthio) adenosine-3', 5'- cyclic monophosphate (8-CPT). Accordingly, we found NAC to turn 8-CPT into a potent killer of ALL cells in vitro both in the presence and absence of DNA damaging treatment. Furthermore, we revealed that NAC in combination with 8-CPT is able to delay the progression of ALL in a xenograft model in NOD-scid IL2Rγnull mice. NAC was shown to rely on the ability of 8-CPT to activate the guanine-nucleotide exchange factor EPAC, and we demonstrated that the ALL cells are killed by apoptosis involving sustained elevated levels of calcium imposed by the combination of the two drugs. Taken together, we propose that 8-CPT in the presence of NAC might be utilized as a novel strategy for treating pediatric ALL patients, and that this powerful combination might be exploited to enhance the therapeutic index of current ALL targeting therapies.


Assuntos
Acetilcisteína , AMP Cíclico , Fatores de Troca do Nucleotídeo Guanina , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Tionucleotídeos , Animais , Criança , Humanos , Camundongos , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , AMP Cíclico/uso terapêutico , DNA/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/agonistas , Camundongos Endogâmicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Masculino , Feminino , Pré-Escolar , Tionucleotídeos/farmacologia , Tionucleotídeos/uso terapêutico , Dano ao DNA , Quimioterapia Combinada
18.
J Hepatol ; 80(3): 467-481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37972658

RESUMO

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Camundongos , Humanos , Animais , Pericitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/patologia , Transdução de Sinais , Células Estreladas do Fígado/metabolismo , Fígado Gorduroso/metabolismo , Cirrose Hepática/patologia , Fator 2 de Diferenciação de Crescimento/metabolismo
19.
Drug Resist Updat ; 72: 101017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988981

RESUMO

The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.


Assuntos
Plaquetas , Megacariócitos , Animais , Humanos , Camundongos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Plaquetas/metabolismo , Diferenciação Celular , Megacariócitos/metabolismo , Mercaptopurina/farmacologia , Mercaptopurina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
20.
J Biol Chem ; 300(1): 105497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016514

RESUMO

For many decades, our understanding of G protein-coupled receptor (GPCR) activity and cyclic AMP (cAMP) signaling was limited exclusively to the plasma membrane. However, a growing body of evidence has challenged this view by introducing the concept of endocytosis-dependent GPCR signaling. This emerging paradigm emphasizes not only the sustained production of cAMP but also its precise subcellular localization, thus transforming our understanding of the spatiotemporal organization of this process. Starting from this alternative point of view, our recent work sheds light on the role of an endocytosis-dependent calcium release from the endoplasmic reticulum in the control of nuclear cAMP levels. This is achieved through the activation of local soluble adenylyl cyclase, which in turn regulates the activation of local protein kinase A (PKA) and downstream transcriptional events. In this review, we explore the dynamic evolution of research on cyclic AMP signaling, including the findings that led us to formulate the novel three-wave hypothesis. We delve into how we abandoned the paradigm of cAMP generation limited to the plasma membrane and the changing perspectives on the rate-limiting step in nuclear PKA activation.


Assuntos
Membrana Celular , AMP Cíclico , Transdução de Sinais , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Núcleo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...